1,228 research outputs found

    X-ray haloes and star formation in early-type galaxies

    Full text link
    High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity (LxL_\mathrm{x}) and temperature (TxT_\mathrm{x}) with galaxy shape and rotation, however they also revealed the formation of an exceedingly massive cooled gas disc in rotating systems. In a follow-up of this study, here we investigate the effects of star formation in the disc, including the consequent injection of mass, momentum and energy in the pre-existing interstellar medium. It is found that subsequent generations of stars originate one after the other in the equatorial region; the mean age of the new stars is >5> 5 Gyr, and the adopted recipe for star formation can reproduce the empirical Kennicutt-Schmidt relation. The results of the previous investigation without star formation, concerning LxL_\mathrm{x} and TxT_\mathrm{x} of the hot gas, and their trends with galactic shape and rotation, are confirmed. At the same time, the consumption of most of the cold gas disc into new stars leads to more realistic final systems, whose cold gas mass and star formation rate agree well with those observed in the local universe. In particular, our models could explain the observation of kinematically aligned gas in massive, fast-rotating early-type galaxies.Comment: 20 pages, 10 figures, 5 tables. Accepted for publication in MNRA

    The effects of stellar dynamics on the X-ray emission of flat early-type galaxies

    Full text link
    Observational and numerical studies gave hints that the hot gaseous haloes of ETGs may be sensitive to the galaxy internal kinematics. By using high resolution 2D hydro simulations, and realistic two-component (stars plus dark matter) axisymmetric galaxy models, we study the evolution of the hot haloes in a suite of flat ETGs of fixed mass distribution, but with variable amounts of azimuthal velocity dispersion and rotational support, including the possibility of a counter-rotating inner stellar disc. The hot halo is fed by stellar mass losses and heated by SNIa explosions and thermalization of stellar motions. We measure the value of the thermalization parameter gamma (the ratio between the heating due to the relative velocity between the stellar streaming and the ISM bulk flow, and the heating attainable by complete thermalization of the stellar streaming motions). We find that 1) the X-ray emission and the average temperature are larger in fully velocity dispersion supported systems; 2) 0.1<gamma<0.2 for isotropic rotators (with a trend for being larger for lower dark mass models); 3) systems that are isotropic rotators at large radii with an inner counter-rotating disc, or fully velocity dispersion supported systems with an inner rotating disc, have gamma=1, again with a trend to increase for lower dark mass contents. We also find that the lower X-ray luminosities of isotropic rotators cannot be explained just by their low gamma, but are due to the complicated flow structure, consequence of the angular momentum stored at large radii. X-ray emission weighted temperatures and luminosities nicely match observed values; the X-ray isophotes are boxy in case of significant galaxy rotation. Overall, it is found that rotation has an important role to explain the observational result that more rotationally supported ETGs on average show a lower X-ray emission [abridged].Comment: 22 pages, 13 figures, accepted for publication in MNRAS. Comments welcom

    Disk dynamics and the X-ray emission of S0 and flat early-type galaxies

    Full text link
    With 2D hydrodynamical simulations, we study the evolution of the hot gas flows in early-type galaxies, focussing on the effects of galaxy rotation on the thermal and dynamical status of the ISM. The galaxy is modelled as a two-component axisymmetric system (stars and dark matter), with a variable amount of azimuthal velocity dispersion and rotational support; the presence of a counter rotating stellar disk is also considered. It is found that the ISM of the rotationally supported (isotropic) model is more prone to thermal instabilities than the fully velocity dispersion counterpart, while its ISM temperature and X-ray luminosity are lower. The model with counter rotation shows an intermediate behaviour.Comment: 2 pages, 2 figures. Proceedings of the International Conference "X-ray Astronomy: towards the next 50 years!", Milan, 1-5 Oct 201

    A Non-blocking Buddy System for Scalable Memory Allocation on Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components handle concurrent allocation/release requests by synchronizing threads via spin-locks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators - the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, that allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Beyond improving scalability and performance it is resilient to performance degradation in face of concurrent accesses independently of the current level of fragmentation of the handled memory blocks

    NBBS: A Non-blocking Buddy System for Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components, like the Linux buddy system, handle concurrent allocation/release requests by synchronizing threads via spinlocks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators—the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, where threads performing concurrent allocations/releases do not undergo any spinlock based synchronization. Our solution allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Conflict detection relies on conventional atomic machine instructions in the Read-Modify-Write (RMW) class. Beyond improving scalability and performance, our solution can also avoid wasting clock cycles for spin-lock operations by threads that could in principle carry out their memory allocation/release in full concurrency. Thus, it is resilient to performance degradation—in face of concurrent accesses—independently of the current level of fragmentation of the handled memory blocks

    Machine Learning-Based Elastic Cloud Resource Provisioning in the Solvency II Framework

    Get PDF
    The Solvency II Directive (Directive 2009/138/EC) is a European Directive issued in November 2009 and effective from January 2016, which has been enacted by the European Union to regulate the insurance and reinsurance sector through the discipline of risk management. Solvency II requires European insurance companies to conduct consistent evaluation and continuous monitoring of risks—a process which is computationally complex and extremely resource-intensive. To this end, companies are required to equip themselves with adequate IT infrastructures, facing a significant outlay. In this paper we present the design and the development of a Machine Learning-based approach to transparently deploy on a cloud environment the most resource-intensive portion of the Solvency II-related computation. Our proposal targets DISAR®, a Solvency II-oriented system initially designed to work on a grid of conventional computers. We show how our solution allows to reduce the overall expenses associated with the computation, without hampering the privacy of the companies’ data (making it suitable for conventional public cloud environments), and allowing to meet the strict temporal requirements required by the Directive. Additionally, the system is organized as a self-optimizing loop, which allows to use information gathered from actual (useful) computations, thus requiring a shorter training phase. We present an experimental study conducted on Amazon EC2 to assess the validity and the efficiency of our proposal

    Charger-mediated energy transfer in exactly-solvable models for quantum batteries

    Get PDF
    We present a systematic analysis and classification of several models of quantum batteries involving different combinations of two level systems and quantum harmonic oscillators. In particular, we study energy transfer processes from a given quantum system, termed charger, to another one, i.e. the proper battery. In this setting, we analyze different figures of merit, including the charging time, the maximum energy transfer, and the average charging power. The role of coupling Hamiltonians which do not preserve the number of local excitations in the charger-battery system is clarified by properly accounting them in the global energy balance of the model.Comment: 11 page

    Photocurrent-based detection of Terahertz radiation in graphene

    Full text link
    Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits the confinement of plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. This scheme has already been experimentally studied in a graphene FET [L. Vicarelli et al., Nature Mat. 11, 865 (2012)]. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The rectified current features a peculiar change of sign when the frequency of the incoming radiation matches an even multiple of the fundamental frequency of plasma waves in the FET channel. The noise equivalent power per unit bandwidth of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.Comment: 5 pages, 4 figure

    Model of murine ventricular cardiac tissue for in vitro kinematic-dynamic studies of electromagnetic and beta2-adrenergic stimulation

    Get PDF
    In a model of murine ventricular cardiac tissue in vitro, we have studied the inotropic effects of electromagnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and their combination. In particular, we have performed an image processing analysis to evaluate the kinematics and the dynamics of beating cardiac syncytia starting from the video registration of their contraction movement. We have found that the electromagnetic stimulation is able to counteract the β-adrenergic effect of isoproterenol and to elicit an antihypertrophic response
    corecore